4,912,637

1 .
VERSION MANAGEMENT TOOL

MICROFICHE APPENDIX

A source code listing of a preferred embodiment of >
the invention is appended in the form of 1240 pages
recorded on microfiche.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the field of
software development tools and more particularly re-
lates to a system for maintaining control of various
versions of a file and for merging different versions of
the same file.

2. Description of the Relevant Art
" An important type of software development tool
manages multiple versions of a common text file. e.g., a
program. Typically, this function is required in a soft-
ware development environment where programs are
revised frequently, often by different people, and where
previous versions must be preserved. Also, it may be
required to merge the changes introduced into indepen-
dent versions of a common file.

One approach to developing such a management 25

system is described in an article by Tichy entitled
“RCS-A System for Version Control”, Software-Prac-
tice and Experience. John Wiley & Sons, N.Y., 1985,
pp. 637-654. That article describes common methods

for preserving every version of a file and for merging 30

versions of the same file. .
Turning first to the method of preserving versions,

the delta method is described in the abovereferenced

article. A delta is a series of edit commands that change

one version into another. A delta may be a forward 35

delta, for changing a given version into the immediately

following version, or a reverse delta, for changing a

given version into an immediately preceding version.
A reverse delta system is often preferred because

experience shows that often the most frequently re- 40

quired version is the last version created. In a reverse
delta system, the last version is stored intact and may be
immediately accessed. Text files of previous versions
must be created by successively applying reverse deltas

to the last version created. 45

A significant limitation in using the delta system to
create a text file of a version separated from the last
version by several intermediate versions is ‘that each
intermediate version must be created and changed by

the appropriate delta. This iterative process limits the 50

speed of accessing intermediate versions.

A given file may develop along a single path where
each version evolves from the immediately preceding
version. Often however, development of a file may

proceed along several independent paths. For example. 55

a first programmer may check out a given file and pro-
ceed to create several versions along a first path. A
second programmer may check out the same given file
and proceed to create several versions along a second
path. The changes introduced along the first and second
paths may be completely independent, e.g.. the two
programmers might not talk to each other and have
different development goals. The paths are related since
they diverge from the same given file.

In some cases, it may be desirable to merge two ver- 65

sions created along independent paths to form a result-
ing version incorporating the changes introduced along
both paths. For example, referring to the example

10

15

2

above, the first programmer may be improving a first
aspect of the given program and the second program-
mer may be improving a second aspect. When they
have completed their tasks, a new program improved in
both aspects may be created by merging versions from
the two paths.

A problem in merging occurs when the same line of
the given program is changed in both versions to be
merged. It is possible that the changes made will con-
flict and not be compilable. Accordingly, merge pro-
grams have been developed including rules for process-
ing lines changed in both versions.

In many existing systems, the lines included in a given
version are identified by line numbers. During a merge,
the line numbers in the versions to be merged are com-
pared and lines identified by specified line numbers are
included in a resulting version. However, often lines
will be duplicated in the resulting version because iden-
tical lines will have different line numbers in the ver-
sions to be merged.

Accordingly, there is a need for improved software
development tools having efficient systems for preserv-
ing development versions of a text file, creating desired
versions, and merging versions developed along inde-
pendent paths.

SUMMARY OF THE INVENTION

The present invention is a version management tool
having improved systems for preserving all versions,
creating any desired version, and merging versions
developed from a common file along independent paths.

In a preferred embodiment, the fundamental unit for
editing is a complete line of text. Thus, to change a
character in a given line of text requires that the given
line be deleted and replaced by a new line having the
desired character changed. Every line active (included)
in any version of a given file is included in an indexed
line file and tagged by a unique line identifier (ULI).
The history of the status of each line in the various
versions is recorded in a variant history file.

According to one aspect of the invention, the variant
history file is an ordered set of records with each record
including a ULI. a version number, and a status flag. In
one embodiment, if the value of the status flag is (A)
then the line identified by the ULI becomes active in the
version identified by the version number included in the
record, if the value of the status flag is (D) then the line
identified by the ULI is deleted in the version identified
by the version number included in the record, and, if the
value of the status flag is (R) then the line identified by
the ULI is replaced in the version identified by the
version number in the record.

According to a further aspect of the invention, the
text file of a desired version is created by searching the
variant history records to identify ULIs of lines active
in the desired version. The lines identified are retrieved
from the line file and included in the created text file.
The search is facilitated by ordering the records in the
variant history file so that a record indicating that a ULI
is replaced immediately follows the record indicating
that the ULI became active. These records are pro-
cessed as a pair and the version numbers compared to
the version number of the desired version. If the ULI
becomes active in a version created before the desired
version and is deleted or replaced in a version following
the given version then the ULI is active in the desired



